MyEnigma

とあるエンジニアのブログです。#Robotics #Programing #C++ #Python #MATLAB #Vim #Mathematics #Book #Movie #Traveling #Mac #iPhone

ポートフォリオ最適化問題とJuliaによるサンプルコード

現代ポートフォリオ理論講義

現代ポートフォリオ理論講義

目次

はじめに

以前、凸最適化技術の基礎として、

線形計画法や、二次計画法の概要を説明し、

myenigma.hatenablog.com

myenigma.hatenablog.com

myenigma.hatenablog.com

 

凸最適化の有名な応用例である

ナップザック問題を解くシミュレーションを紹介しました。

myenigma.hatenablog.com

 

今回は同じく、凸最適化の応用例として有名な

ポートフォリオ最適化問題の概要と、

ポートフォリオフォリオ最適化問題を解く、

Juliaサンプルコードを紹介したいと思います。

 

ポートフォリオ最適化問題

ポートフォリオ最適化問題は、

金融工学の有名な問題の一つで、

複数の投資先(アセット)に、

それぞれどれだけ投資すれば良いかという最適化問題です。

www.msi.co.jp

2.17 ポートフォリオ最適化問題

www.mathworks.com

 

このポートフォリオ最適化問題は、

最適化問題の設定によって様々な定式化が可能なのですが、

代表的な最適化の定式化として、

アメリカの経済学者マーコウィッツが提唱した、

ハリー・マーコウィッツ - Wikipedia

Markowitz Portfolioが下記の式です。

f:id:meison_amsl:20170823141055p:plain

上記の式において、

xは各投資先に対する資産の配分の割合で、

xのそれぞれの要素は0<x_i<1の範囲の値を持ちます。

加えて、xの総和は1になるような制約も加えられます。

一つ目の制約は、

μは各投資先の平均利益率を表したもので、

その平均利益率を資産配分のxでそれぞれ積和をとった値が、

r_min以上になるような制約です。

このr_mimはパラメータで、

すべての資産の平均利益率がある一定値になるように設定できます。

最後に評価関数としては、Σを各資産の時系列データから計算した

共分散行列とし、それとxの二次形式を計算することで

Markowitz Portfolioの評価関数としては、

資産の分散の総和が小さくなるような、

資産配分になるように最適化されます。

 

Juliaによるポートフォリオ最大化問題解法サンプルコード

前述のMarkowitz Portfolioの最適化のサンプルコードを

下記のリポジトリで公開しています。

github.com

今回は、最適化コードの言語としてJuliaを利用し、

myenigma.hatenablog.com

Juliaの最適化ライブラリJuMPも利用しています。

myenigma.hatenablog.com

また、上記のリポジトリでは、

JuliaカーネルIJuliaを使って、

github.com

Jupyter notebook形式で作成しました。

 

下記は今回サンプルコードで使用した

3種類の投資先の時系列の利益率データになります。

f:id:meison_amsl:20170822153155p:plain

下記はこのデータをグラフ化したものです。

それぞれの投資先において、

利益率の平均と分散が異なることがわかります。

f:id:meison_amsl:20170822153208p:plain

下記はそれぞれのr_minの値において、

3つの投資先への投資配分をグラフにしたものです。

f:id:meison_amsl:20170822153229p:plain

上記のコードを見ると分かる通り、

r_minの値を変化させると投資先3への投資額は変わりませんが、

投資先1と2の配分が変化していることがわかります。

r_minが上がると、資産の分散よりも

平均利益率が重要視されるため、

分散は大きいが、利益平均値も高い投資先2が重要視されるようです。

 

参考資料

myenigma.hatenablog.com

myenigma.hatenablog.com

myenigma.hatenablog.com

myenigma.hatenablog.com

myenigma.hatenablog.com

現代ポートフォリオ理論講義

現代ポートフォリオ理論講義

 

MyEnigma Supporters

もしこの記事が参考になり、

ブログをサポートしたいと思われた方は、

こちらからよろしくお願いします。

myenigma.hatenablog.com